If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m^2=40
We move all terms to the left:
m^2-(40)=0
a = 1; b = 0; c = -40;
Δ = b2-4ac
Δ = 02-4·1·(-40)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*1}=\frac{0-4\sqrt{10}}{2} =-\frac{4\sqrt{10}}{2} =-2\sqrt{10} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*1}=\frac{0+4\sqrt{10}}{2} =\frac{4\sqrt{10}}{2} =2\sqrt{10} $
| 7x+21+(5x-3)=180 | | 18=-2t+28 | | 3v=3.85 | | -(4-3s)+s=-3s+10 | | 42=3x+7+2x+5 | | 23x+28=12x+98 | | 42=3x+7+2x+542=3x+7+2x+5 | | (2n+3)×(n+4)=7 | | -4+2=-3x-4 | | 10+25 x−21 x+7=349 | | -230+x=400 | | 3d+5=2d+7 | | 3x+(7–4)=2x–(3–5) | | 4.5x-16.9=5.6 | | 2x+5.5=20 | | -32=-3=7x=3(x-2) | | x/7=529 | | -22x+5=+2 | | 38+7k=8(k+k) | | 1355=17^r+5 | | 15x-141=6x-6 | | x2=7x-24=10 | | 1/5^19=5x | | 0.02x+0.7=9.8-0.03x | | 5-7n=-4(n+1)-3 | | 9m-5m-2=34 | | 50x+120(92*x)=8380 | | -14x=2x | | (x/3)-14=9 | | -3=7x+10 | | 5x+1=2x+-5 | | −4=8x+2 |